1,773 research outputs found

    An adaptive Metropolis-Hastings scheme: sampling and optimization

    Full text link
    We propose an adaptive Metropolis-Hastings algorithm in which sampled data are used to update the proposal distribution. We use the samples found by the algorithm at a particular step to form the information-theoretically optimal mean-field approximation to the target distribution, and update the proposal distribution to be that approximatio. We employ our algorithm to sample the energy distribution for several spin-glasses and we demonstrate the superiority of our algorithm to the conventional MH algorithm in sampling and in annealing optimization.Comment: To appear in Europhysics Letter

    Collective Intelligence for Control of Distributed Dynamical Systems

    Full text link
    We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, ``The American Economic Review'', 84(2): 406--411 (1994), D. Challet and Y.C. Zhang, ``Physica A'', 256:514 (1998)). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not ``work at cross purposes'', in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.Comment: 8 page

    Nonlinear Information Bottleneck

    Full text link
    Information bottleneck (IB) is a technique for extracting information in one random variable XX that is relevant for predicting another random variable YY. IB works by encoding XX in a compressed "bottleneck" random variable MM from which YY can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete XX and YY with small state spaces, and continuous XX and YY with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous XX and YY, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed "variational IB" method on several real-world datasets

    A low-energy solar cosmic ray experiment for OGO-F

    Get PDF
    Instrumentation data for low energy solar cosmic ray measurements using OGO-F satellit

    When is Sessional Monitoring More Likely in Child and Adolescent Mental Health Services?

    Get PDF
    Sessional monitoring of patient progress or experience of therapy is an evidence-based intervention recommended by healthcare systems internationally. It is being rolled out across child and adolescent mental health services (CAMHS) in England to inform clinical practice and service evaluation. We explored whether patient demographic and case characteristics were associated with the likelihood of using sessional monitoring. Multilevel regressions were conducted on N = 2609 youths from a routinely collected dataset from 10 CAMHS. Girls (odds ratio, OR 1.26), older youths (OR 1.10), White youths (OR 1.35), and youths presenting with mood (OR 1.46) or anxiety problems (OR 1.59) were more likely to have sessional monitoring. In contrast, youths under state care (OR 0.20) or in need of social service input (OR 0.39) were less likely to have sessional monitoring. Findings of the present research may suggest that sessional monitoring is more likely with common problems such as mood and anxiety problems but less likely with more complex cases, such as those involving youths under state care or those in need of social service input

    Adaptive Anomaly Detection via Self-Calibration and Dynamic Updating

    Get PDF
    The deployment and use of Anomaly Detection (AD) sensors often requires the intervention of a human expert to manually calibrate and optimize their performance. Depending on the site and the type of traffic it receives, the operators might have to provide recent and sanitized training data sets, the characteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected future modifications of system's behavior. In this paper, we study the potential performance issues that stem from fully automating the AD sensors' day-to-day maintenance and calibration. Our goal is to remove the dependence on human operator using an unlabeled, and thus potentially dirty, sample of incoming traffic. To that end, we propose to enhance the training phase of AD sensors with a self-calibration phase, leading to the automatic determination of the optimal AD parameters. We show how this novel calibration phase can be employed in conjunction with previously proposed methods for training data sanitization resulting in a fully automated AD maintenance cycle. Our approach is completely agnostic to the underlying AD sensor algorithm. Furthermore, the self-calibration can be applied in an online fashion to ensure that the resulting AD models reflect changes in the system's behavior which would otherwise render the sensor's internal state inconsistent. We verify the validity of our approach through a series of experiments where we compare the manually obtained optimal parameters with the ones computed from the self-calibration phase. Modeling traffic from two different sources, the fully automated calibration shows a 7.08% reduction in detection rate and a 0.06% increase in false positives, in the worst case, when compared to the optimal selection of parameters. Finally, our adaptive models outperform the statically generated ones retaining the gains in performance from the sanitization process over time

    Quantitative analysis of cell types during growth and morphogenesis in Hydra

    Get PDF
    Tissue maceration was used to determine the absolute number and the distribution of cell types in Hydra. It was shown that the total number of cells per animal as well as the distribution of cells vary depending on temperature, feeding conditions, and state of growth. During head and foot regeneration and during budding the first detectable change in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. These results and the finding that nerve cells are most concentrated in the head region, diminishing in density down the body column, are discussed in relation to tissue polarity

    Coarse-Graining and Self-Dissimilarity of Complex Networks

    Full text link
    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units (CGU) as connectivity patterns which can serve as the nodes of a coarse-grained network, and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then, the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit-module made of multiple gates. We apply our approach also to a mammalian protein-signaling network, to find a simplified coarse-grained network with three main signaling channels that correspond to cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are 'self-dissimilar', with different network motifs found at each level. The present approach can be used to simplify a wide variety of directed and nondirected, natural and designed networks.Comment: 11 pages, 11 figure
    corecore